Khan AZ, Blohm G, McPeek RM, Lefèvre P. Differential influence of attention on gaze and head movements. J Neurophysiol 101: 198 -206, 2009. First published November 5, 2008 doi:10.1152/jn.90815.2008. A salient peripheral cue can capture attention, influencing subsequent responses to a target. Attentional cueing effects have been studied for head-restrained saccades; however, under natural conditions, the head contributes to gaze shifts. We asked whether attention influences head movements in combined eye-head gaze shifts and, if so, whether this influence is different for the eye and head components. Subjects made combined eye-head gaze shifts to horizontal visual targets. Prior to target onset, a behaviorally irrelevant cue was flashed at the same (congruent) or opposite (incongruent) location at various stimulusonset asynchrony (SOA) times. We measured eye and head movements and neck muscle electromyographic signals. Reaction times for the eye and head were highly correlated; both showed significantly shorter latencies (attentional facilitation) for congruent compared with incongruent cues at the two shortest SOAs and the opposite pattern (inhibition of return) at the longer SOAs, consistent with attentional modulation of a common eye-head gaze drive. Interestingly, we also found that the head latency relative to saccade onset was significantly shorter for congruent than that for incongruent cues. This suggests an effect of attention on the head separate from that on the eyes.
I N T R O D U C T I O NUnder natural, head-unrestrained viewing conditions, saccades are typically composed of a combination of eye and head movements resulting in an overall gaze shift. The role of attention in saccadic eye movements has been studied extensively in head-restrained conditions. It has been established that saccade execution requires a shift of attention to the saccade goal (e.g., Deubel and Schneider 1996;Hoffman and Subramaniam 1995;Kowler et al. 1995;McPeek et al. 1999), indicating a close linkage between eye movements and attention. Such a linkage is also supported by a number of studies showing shared neural substrates for saccadic eye movement planning and attentional processing (e.g., Beauchamp et al.