Dirac-harmonic maps couple a second order harmonic map type system with a first nonlinear Dirac equation. We consider approximate Dirac-harmonic maps {(φ n , ψ n )}, that is, maps that satisfy the Dirac-harmonic system up to controlled error terms. We show that such approximate Dirac-harmonic maps defined on a Riemann surface, that is, in dimension 2, continue to satisfy the basic properties of blow-up analysis like the energy identity and the no neck property. The assumptions are such that they hold for solutions of the heat flow of Dirac-harmonic maps. That flow turns the harmonic map type system into a parabolic system, but simply keeps the Dirac equation as a nonlinear first order constraint along the flow. As a corollary of the main result of this paper, when such a flow blows up at infinite time at interior points, we obtain an energy identity and the no neck property.