2024
DOI: 10.31801/cfsuasmas.1441894
|View full text |Cite
|
Sign up to set email alerts
|

On the finiteness of some p-divisible sets

Çağatay Altuntaş

Abstract: For any positive integer $n$, let $H_n$ denote the $n^{th}$ harmonic number. Given a prime number $p$, it is not known whether the set of integers $J(p) = \{n \in \mathbb{N} : p \mid H_n \} $ is finite. In this paper, we first investigate a variant of this set, namely, we work on the divisibility properties of the differences of harmonic numbers. For any prime $p$ and a positive integer $w$, we define the set $D(p,w)$ as $\{n \in \mathbb{N} : p \mid H_n - H_w \}$ and work on the structure of this set. We pres… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?