Abstract:Fixed points of the self-power map over a finite field have been studied in cryptology as a special case of modular exponentiation. In this note, we define an elliptic-curve version of the self-power map, enumerate the number of curves that contain at least one fixed point, and give its upper and lower bounds. Our result is a partial solution to the open question raised by Glebsky and Shparlinski in 2010.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.