Unmanned aerial vehicle (UAV) cooperative control has been an important issue in UAV-assisted sensor networks, thanks to the considerable benefit obtained from the cooperative mechanism of UAVs being applied as a flying base station. In a coverage scenarios, the trade-off between coverage and transmission performance often makes deployment of UAVs fall into a dilemma, since both indexes are related to the distance between UAVs. To address this issue, UAV coverage and data transmission mechanism is analyzed in this paper; then, an efficient multi-UAV cooperative deployment model is proposed. The problem is modeled as a coalition formation game (CFG). The CFG with Pareto order is proved to have a stable partition. Then, an effective approach consisting of coverage deployment and coalition selection is designed, wherein UAVs can decide strategies cooperatively to achieve better coverage performance. Combining analysis of game approach, coalition selection and the position deployment algorithm based on Pareto order (CSPDA-PO) is designed to execute coverage deployment and coalition selection. Finally, simulation results are shown to validate the proposed approach based on an efficient multi-UAV cooperative deployment model.