Herein we introduce deep UV fluorescence lifetime detection in microfluidics applied for label-free detection and identification of various aromatic analytes in chip electrophoresis. For this purpose, a frequency quadrupled Nd:YAG (neodymium-doped yttrium aluminum garnet) picosecond laser at 266 nm was incorporated into an inverse fluorescence microscope setup with time-correlated single photon counting detection. This allowed recording of photon timing with sub-nanosecond precision. Thereby fluorescence decay curves are gathered on-the-fly and average lifetimes can be determined for each substance in the electropherogram. The aromatic compounds serotonin, propranolol, 3-phenoxy-1,2-propanediol and tryptophan were electrophoretically separated using a fused-silica microchip. Average lifetimes were independently determined for each compound via bi-exponential tail fitting. Time-correlated single photon counting also allows the discrimination of background fluorescence in the time domain. This results in improved signal-to-noise-ratios as demonstrated for the above model analytes. Microchip electrophoretic separations with fluorescence lifetime detection were also performed with a protein mixture containing lysozyme, trypsinogen and chymotrypsinogen emphasizing the potential for biopolymer analysis.