Abstract. We describe the main features of the households databases we can find in most of our National Statistics Institute. We provide algorithms aimed at extracting a diversity of variables on which different statistical procedures may be applied. Here, we particularly focus on the scaled income, as a beginning. Associated codes (MS Visual Basic ™ and R codes) have been successfully tested and delivered in the text and in a separate file.Résumé. Nous décrivons les principales caractéristiques des bases de données sur les ménages que nous pouvons trouver dans la plupart de nos Instituts Nationaux de Statistiques (INS). Nous fournissons des algorithmes visantà extraire une diversité de variables quantitatives ou qualitatives sur lesquelles différentes procédures statistiques peuventêtre appliquées. Ici, nous traitons entre autres de la variable revenu pondérée par l'échelle d'équivalence adulte, pour un début. Des codes correspondants (dans MS Visual Basic ™ et dans R) ont eté testés avec succés et sont fournis dans le texte et dans un fichier séparé.Key words: National Statistical Institutes (NSI); Preludes to Statistical Studies; Data storing; Data handling; Households databases; Algorithms; computer programs and codes. AMS 2010 Mathematics Subject Classification : 68P01; 68P05; 68N01Presented by Dr Diakarya Barro, Université Ouaga I Joseph Ki-Zerbo Corresponding Member of the Editorial Board * Corresponding author : gane-samb.lo@ugb.edu.sn, gslo@aust.edu.ng G.S. Lo, African Journal of Applied Statistics, Vol. 3 (1), 2016, pages 121 -156. VB™ and R codes using Households databases : A prelude to statistical applied studies.
122
IntroductionIn this paper, we want to share our experience in using some household databases one can find in most of African National Statistical institutes (NSI ).In most of the African countries, a number of surveys have been and continue to be conducted at a national wide level. The African Statistical Yearbook(2016), provided by the website of the African Center for Statistics ACS, uses data from 54 African countries. So, at the continental level, the availability of such households databases amounts to a considerable number of interesting and useful data collections. At the same time, it is very strange and disappointing that only a very few number of research works has been undertaken by African Scholars, at least, scholars in the Mathematics and Statistics Departments.As mentioned in LO(2014), I witnessed, as editor of Afrika Statistika for almost a decade and as a member of a number of Master and PhD theses juries, that most of our colleagues and our students use data sets concerning western countries and picked out from the books to illustrate their theoretical works. I reviewed a very interesting PhD thesis, from Central Africa, on Generalized Poisson Laws in which the candidate used data from England, exactly the number rain days in London. In my report, I pointed out such statistics do exist in meteorology stations and I recommended to contact them and to get the data.The e...