This paper is intended to: 1) show how the local smooth geometry of spaces of normal quantum states over W ˚-algebras (generalised spaces of density matrices) may be used to substantially enrich the description of quantum dynamics in the algebraic and path integral approaches; 2) provide a framework for construction of quantum information theories beyond quantum mechanics, such that quantum mechanical linearity holds only locally, while the nonlocal multi-user dynamics exhibits some similarity with general relativity. In the algebraic setting, we propose a method of incorporating nonlinear Poisson and relative entropic local dynamics, as well as local gauge and local source structures, into an effective description of local temporal evolution of quantum states by using fibrewise perturbations of liouvilleans in the fibre bundle of Hilbert spaces over the quantum state manifold. We apply this method to construct an algebraic generalisation of Savvidou's action operator. In the path integral setting, motivated by the Savvidou-Anastopoulous analysis of the role of Kähler space geometry in the Isham-Linden quantum histories, we propose to incorporate local geometry by means of a generalisation of the Daubechies-Klauder coherent state phase space propagator formula. Finally, we discuss the role of Brègman relative entropy in the Jaynes-Mitchell-Favretti renormalisation scheme. Using these tools we show that: 1) the propagation of quantum particles (in Wigner's sense) can be naturally explained as a free fall along the trajectories locally minimising the quantum relative entropy; 2) the contribution of particular trajectories to the global path integral is weighted by the local quantum entropic prior, measuring user's lack of information; 3) the presence of nonlinear quantum control variables results in the change of the curvature of the global quantum state space; 4) the behaviour of zero-point energy under renormalisation of local entropic dynamics is maintained by local redefinition of information mass (prior), which encodes the curvature change. We conclude this work with a proposal of a new framework for nonequilibrium quantum statistical mechanics based on quantum Orlicz spaces, quantum Brègman distances and Banach Lie algebras.