Constitutive equations for the stress and couple stress on an incompressible, hemitropic, constrained Cosserat material are derived, and the theory is applied to study the problem of finite extension, torsion and expansion of a circular cylinder. As in the theory of isotropic simple elastic materials, it is found that the deformation is controllable by application of only a normal force and a tosional moment at the cylinder ends. It is shown that in general the well known universal relation between the torsional stiffness and the axial force for incompressible, isotropic simple materials in the limit as the twist goes to zero does not exist for incompressible, hemitropic Cosserat materials. However, for a special and unusual class of hemitropic materials, the same universal formula is found to hold for a certain reduced torsional stiffness. The main problem is solved completely for incompressible, hemitropic, linearly elastic, Cosserat materials; and certain additional special features of the Kelvin-Poynting. type, which here appear to the first order in the amount of twist of the cylinder, are derived and discussed in relation to experimentally observed composite material behavior.