2019
DOI: 10.1007/s00209-019-02415-5
|View full text |Cite
|
Sign up to set email alerts
|

On the geometric order of totally nondegenerate CR manifolds

Abstract: A CR manifold M , with CR distribution D 10 ⊂ T C M , is called totally nondegenerate of depth µ if: (a) the complex tangent space T C M is generated by all complex vector fields that might be determined by iterated Lie brackets between at most µ fields in D 10 +D 10 ; (b) for each integer 2 ≤ k ≤ µ−1, the families of all vector fields that might be determined by iterated Lie brackets between at most k fields in D 10 + D 10 generate regular complex distributions; (c) the ranks of the distributions in (b) have … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 17 publications
0
1
0
1
Order By: Relevance
“…Acknowledgement. After posting the article on arXiv, I noticed that there is a paper [SS18] by Sabzevari and Spiro that appeared practically at the same time that is independently proving the Main Theorem by slightly different methods.…”
Section: Introductionmentioning
confidence: 99%
“…Acknowledgement. After posting the article on arXiv, I noticed that there is a paper [SS18] by Sabzevari and Spiro that appeared practically at the same time that is independently proving the Main Theorem by slightly different methods.…”
Section: Introductionmentioning
confidence: 99%
“…размерности комплексной касательной) и вещественной коразмерности многообразия и составляющие его тип (n, k), положительны и конечны, то g + в большинстве случаев оказывается тривиальной. В частности, алгебра g + тривиальна для почти любой квадратичной модельной поверхности фиксированного типа (n, k) (при некоторых ограничениях на n и k) ( [2], [3]), а в случае вполне невырожденных модельных поверхностей более высоких порядков алгебра g + тривиальна всегда ( [4], [5], [6]).…”
Section: Introductionunclassified