2024
DOI: 10.1007/s13324-024-00981-4
|View full text |Cite
|
Sign up to set email alerts
|

On the Hardy number of Koenigs domains

Manuel D. Contreras,
Francisco J. Cruz-Zamorano,
Maria Kourou
et al.

Abstract: This work studies the Hardy number of hyperbolic planar domains satisfying Abel’s inclusion property, which are usually known as Koenigs domains. More explicitly, we prove that the Hardy number of a Koenings domains whose complement is non-polar is greater than or equal to 1/2, and this lower bound is sharp. In contrast to this result, we provide examples of general domains whose Hardy numbers are arbitrarily small. Additionally, we outline the connection of the aforementioned class of domains with the discret… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?