We study the interplay among Wall's D(2) problem, normal generation conjecture (the Wiegold Conjecture) of perfect groups and Swan's problem on partial Euler characteristic and deficiency of groups. In particular, for a 3-dimensional complex X of cohomological dimension 2 with finite fundamental group, assuming the Wiegold conjecture holds, we prove that X is homotopy equivalent to a finite 2-complex after wedging a copy of sphere S 2 .