With the proliferation of high-performance, large-screen mobile devices, users' expectations of having access to high-resolution video content in smooth network environments are steadily growing. To guarantee such stable streaming, a high cellular network bandwidth is required; yet network providers often charge high prices for even limited data plans. Moreover, the costs of smoothly streaming high-resolution videos are not merely monetary; the device's battery life must also be accounted for. To resolve these problems, we design an optimal multi-interface selection system for streaming video over HTTP/TCP. An optimization problem including battery life and LTE data constraints is derived and then solved using binary integer programming. Additionally, the system is designed with an adoption of split-layer scalable video coding, which provides direct adaptations of video quality and prevents out-of-order packet delivery problems. The proposed system is evaluated using a prototype application in a real, iOSbased device as well as through experiments conducted in heterogeneous mobile scenarios. Results show that the system not only guarantees the highest-possible video quality, but also prevents reckless consumption of LTE data and battery life.