The utility of a match in a two-sided matching market often depends on a variety of characteristics of the two agents (e.g., a buyer and a seller) to be matched. In contrast to the matching market literature, this utility may best be modeled by a general matching utility distribution. In “Asymptotically Optimal Control of a Centralized Dynamic Matching Market with General Utilities,” Blanchet, Reiman, Shah, Wein, and Wu consider general matching utilities in the context of a centralized dynamic matching market. To analyze this difficult problem, they combine two asymptotic techniques: extreme value theory (and regularly varying functions) and fluid asymptotics of queueing systems. A key trade-off in this problem is market thickness: Do we myopically make the best match that is currently available, or do we allow the market to thicken in the hope of making a better match in the future while avoiding agent abandonment? Their asymptotic analysis derives quite explicit results for this problem and reveals how the optimal amount of market thickness increases with the right tail of the matching utility distribution and the amount of market imbalance. Their use of regularly varying functions also allows them to consider correlated matching utilities (e.g., buyers have positively correlated utilities with a given seller), which is ubiquitous in matching markets.