The exposure of protein pharmaceuticals to light can cause loss of potency, oxidation, structural changes and aggregation. To elucidate the chemical pathways of photodegradation, we irradiated human growth hormone (hGH) at λ = 254 nm, λ ≈ 265-340 nm, and λ ≈ 295-340 nm (using the spectral cutoff of borosilicate glass) and analyzed the products by mass spectrometry. By means of LC-MS/MS analysis, we observed an unusual peptide backbone cleavage between Glu-88 and Pro-89. The crystal structure of hGH indicates that these residues are in proximity to Trp-86, which likely mediates this backbone cleavage. The two cleavage fragments observed by MS/MS analysis indicate the loss of CO from the amide bond and replacement of the Glu-C(═ O)Pro bond with a Glu-H bond, accompanied by double bond formation on proline. The reaction is oxygen-independent and likely involves hydrogen transfer to the Cα of Glu-88. To probe the influence of the protein fold, we irradiated hGH in its unfolded state, in 1:1 (v/v) acetonitrile/water, and also the isolated tryptic peptide Ile-78-Arg-90, which contains the Glu-88-Pro-89 sequence. In both cases, the cleavage between Glu-88 and Pro-89 was largely suppressed, while other cleavage pathways became dominant, notably between Gln-84 and Ser-85, as well as Ser-85 and Trp-86.