If the functions \(f,g:I\rightarrow \mathbb{R}\) are differentiable on the
interval \(I\subseteq \mathbb{R}\), \(a\in I,\) then there exists a function \(\bar{c}:I\rightarrow I\) such that
$$
\left[ f\left( x\right) -f\left( a\right) \right] g^{\left( 1\right) }\left(
\bar{c}\left( x\right) \right) =\left[ g\left( x\right) -g\left(
a\right) \right] f^{\left( 1\right) }\left( \bar{c}\left( x\right)
\right) ,\text{ for }x\in I.
$$
In this paper we study the differentiability of the function \(\bar{c}\),
when
$$
f^{\left( k\right) }\left( a\right) g^{\left( 1\right) }\left( a\right)
=f^{\left( 1\right) }\left( a\right) g^{\left( k\right) }\left( a\right) ,
\text{ for all }k\in \{1,...,n-1\}
$$
and
$$
f^{\left( n\right) }\left( a\right) g^{\left( 1\right) }\left( a\right) \neq
f^{\left( 1\right) }\left( a\right) g^{\left( n\right) }\left( a\right).
$$