This paper presents new results related to Bombieri’s generalization of Bessel’s inequality in a semi-inner product space induced by a positive semidefinite operator A. Specifically, we establish new inequalities that generalize the classical Bessel inequality and extend previous results in this area. Furthermore, our findings have applications to the study of operators on positive semidefinite inner product spaces, also known as semi-Hilbert spaces, and contribute to a deeper understanding of their properties and applications. Our work has implications for various fields, including functional analysis and operator theory.