The level of a ring R with 1 = 0 is the smallest positive integer s such that −1 can be written as a sum of s squares in R, provided −1 is a sum of squares at all. D. W. Lewis showed that any value of type 2 n or 2 n + 1 can be realized as level of a quaternion algebra, and he asked whether there exist quaternion algebras whose levels are not of that form. Using function fields of quadratic forms, we construct such examples.