2017
DOI: 10.1063/1.4998968
|View full text |Cite
|
Sign up to set email alerts
|

On the limitations of gyrokinetics: Magnetic moment conservation

Abstract: Gyrokinetic theory is a popular and efficient approach to study low-frequency phenomena in magnetized plasmas. Its applicability is rooted in the invariance of a charged particle's magnetic moment. We calculate the maximum non-conservation of this magnetic moment in various elementary combinations of electromagnetic fields. The situation is ameliorated by introducing magnetic moments that account for the drift behavior of the guiding center. Based on these results, we discuss the limitations of gyrokinetics on… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
5
1

Relationship

2
4

Authors

Journals

citations
Cited by 6 publications
(6 citation statements)
references
References 28 publications
0
6
0
Order By: Relevance
“…After the loss cone size is determined, we set initial distributions of particle velocities in the velocity space: 372 points evenly distributed in v ⊥1 , v ⊥2 plane inside the loss cone (see Figure 6). It should be noted that the magnetic moment conserves only in the frame moving with the guiding center (Stephens et al., 2017). The guiding center drift velocity is negligible at the ionospheric altitude but it cannot be neglected at r = 3.5 R E .…”
Section: Methodsmentioning
confidence: 99%
“…After the loss cone size is determined, we set initial distributions of particle velocities in the velocity space: 372 points evenly distributed in v ⊥1 , v ⊥2 plane inside the loss cone (see Figure 6). It should be noted that the magnetic moment conserves only in the frame moving with the guiding center (Stephens et al., 2017). The guiding center drift velocity is negligible at the ionospheric altitude but it cannot be neglected at r = 3.5 R E .…”
Section: Methodsmentioning
confidence: 99%
“…Under such conditions, the magnetic moment is adiabatically conserved (Brizard & Hahm 2007; Stephens et al. 2017), and the gyromotion can be decoupled from the guiding centre motion: where is equivalent to the gyrophase, is the gyroradius and the subscript ‘’ refers to the location of the particle's guiding centre. These guiding centre variables obey the guiding centre equations of motion.…”
Section: Action-angle Variablesmentioning
confidence: 99%
“…Essentially, we apply gyrokinetics to situations where we can decouple the fast gyromotion of the charged particle from the slow drift motion; this can be done when the time scale of the gyromotion is significantly faster than all other time scales in the system and when the gyroradius is smaller than almost all other length scales in the system. In such a scenario, the magnetic moment is conserved, leading to a significant reduction in the complexity of the dynamics (Stephens, Brzozowski III & Jenko 2017). Moreover, gyrokinetics incorporates an ordering where the modes are anisotropic and flute-like, meaning that the characteristic parallel wavelength of the mode is large but perpendicular wavelengths can be comparable to the gyroradius.…”
Section: Introductionmentioning
confidence: 99%
“…The guiding center approximation used in this work is justified by the adiabatic conservation of the magnetic moment, which requires that the gyroradius be small compared to other relevant length scales in the system. [32][33][34][35][36] We impose two conditions on the guiding center particle orbit to determine the bounce-transit motion to lowest-order in the gyroradius:…”
Section: Circular Magnetic Geometrymentioning
confidence: 99%