In this paper, we will obtain the necessary and sufficient conditions for the analysis of the position of local symmetry on an arbitrary Riemannian manifold. These conditions are devoid of the aspects of Lie groups, and thus can be used in calculations of procedures, without interfering with the concepts of Lie groups, and improve intuitive attitudes. Also, we will study and create equivalent conditions for a situation where a two-metric homogeneous Riemannian manifold is located symmetrically. In addition, in this paper it is stated that the symmetric space (M, g) can be seen as a homogeneous space G/K. Also, one-to-one correspondence between the symmetric space and the symmetric pair is shown, and curvature is studied on a symmetric space.