“…Let p 1 = d 2 . Then for each j ∈ {1, 2}, either u i ≥ 0 for all i ∈ [p j−1 + 1, p j ] or u i ≤ 0 for all i ∈ [p j−1 + 1, p j ], where p 0 = 1 and p 2 = n. Moreover,|u i | ≤ 1 for all i ∈ [n].Proof of Claim 5:For i ∈ [1, d 2 ], by(18), we haveu i = 0 or u i = x i − x ′ d2 . If x ′ d2 = 0, then u i ≥ 0 for all i ∈ [1, d 2 ]; if x ′ d2 = 1, then u i ≤ 0 for all i ∈ [1, d 2 ].…”