We generalize work of Bourgain-Kontorovich [6] and Zhang [32], proving an almost local-to-global property for the curvatures of certain circle packings, to a large class of Kleinian groups. Specifically, we associate in a natural way an infinite family of integral packings of circles to any Kleinian group A ≤ PSL 2 (K) satisfying certain conditions, where K is an imaginary quadratic field, and show that the curvatures of the circles in any such packing satisfy an almost local-to-global principle. A key ingredient in the proof of this is that A possesses a spectral gap property, which we prove for any infinite-covolume, geometrically finite, Zariski dense Kleinian group in PSL 2 (O K ) containing a Zariski dense subgroup of PSL 2 (Z).