Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The procedure for solving the plane problem of the linear theory of viscoelasticity by the finite element method is described. Based on the virtual work principle and the assumption of the constancy of the strain rate at small intervals of time, the matrix form of the equilibrium equations of the finite-element approximation of a body is written. The solution procedure is described for the constitutive relations in the Boltzmann—Volterra integral form. This integral is transformed into an incremental form on a time mesh, at each interval of which the problem is solved by the finite element method with unknown increments of displacements. The numerical procedure is constructed by ununiformly dividing the time interval, at which the study is conducted. In this case, the stiffness matrix requires recalculation at each time step. The relaxation functions of the moduli of a viscoelastic orthotropic material are described in the form of the Proni—Dirichlet series. The solution to the problem of determining the change over time of the stress concentration in a body with a round hole in a viscoelastic orthotropic plate is presented. To construct a numerical solution, the three moduli of orthotropic material were written using one exponent with the same relaxation time. For these initial data, an analytic expression for the viscoelastic components of the stiffness matrix of an orthotropic plate under plain stress conditions is constructed. Numerical examples are presented for several ratios of the hole radius to the size of the plate. These results are compared with the solution obtained for an infinite plate by inverse transformation by a numerical method of the well-known analytic elastic solution.
The procedure for solving the plane problem of the linear theory of viscoelasticity by the finite element method is described. Based on the virtual work principle and the assumption of the constancy of the strain rate at small intervals of time, the matrix form of the equilibrium equations of the finite-element approximation of a body is written. The solution procedure is described for the constitutive relations in the Boltzmann—Volterra integral form. This integral is transformed into an incremental form on a time mesh, at each interval of which the problem is solved by the finite element method with unknown increments of displacements. The numerical procedure is constructed by ununiformly dividing the time interval, at which the study is conducted. In this case, the stiffness matrix requires recalculation at each time step. The relaxation functions of the moduli of a viscoelastic orthotropic material are described in the form of the Proni—Dirichlet series. The solution to the problem of determining the change over time of the stress concentration in a body with a round hole in a viscoelastic orthotropic plate is presented. To construct a numerical solution, the three moduli of orthotropic material were written using one exponent with the same relaxation time. For these initial data, an analytic expression for the viscoelastic components of the stiffness matrix of an orthotropic plate under plain stress conditions is constructed. Numerical examples are presented for several ratios of the hole radius to the size of the plate. These results are compared with the solution obtained for an infinite plate by inverse transformation by a numerical method of the well-known analytic elastic solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.