In this paper, we consider a linear discrete-time fractional-order system defined by \[\Delta ^{\alpha }x_ {k+1}=Ax_k+B u_k, \quad k \geq 0, \quad x_{0} \in \mathbb{R}^{n};\] \[y_{k}=Cx_k, \quad k \geq 0,\] where $A$, $B$ and $C$ are appropriate matrices, $x_{0}$ is the initial state, $\alpha$ is the order of the derivative, $y_k$ is the signal output and $u_k=K x_k$ is feedback control. By defining the fractional derivative in the Grunwald–Letnikov sense, we investigate the characterization of the maximal output set, $\Gamma(\Omega)=\lbrace x_{0} \in \mathbb{R}^{n}/y_{i} \in \Omega,\forall i \geq 0 \rbrace$, where $\Omega\subset\mathbb{R}^{p}$ is a constraint set; and, by using some hypotheses of stability and observability, we prove that $\Gamma(\Omega)$ can be derived from a finite number of inequations. A powerful algorithm approach is included to identify the maximal output set; also, some appropriate algorithms and numerical simulations are given to illustrate the theoretical results.