2010
DOI: 10.5802/jtnb.707
|View full text |Cite
|
Sign up to set email alerts
|

On the maximal unramified pro-2-extension over the cyclotomic \mathbb{Z}_2-extension of an imaginary quadratic field

Abstract: On the maximal unramified pro-2-extension over the cyclotomic Z 2-extension of an imaginary quadratic field Tome 22, n o 1 (2010), p. 115-138. © Université Bordeaux 1, 2010, tous droits réservés. L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
3
0

Year Published

2012
2012
2024
2024

Publication Types

Select...
5
2

Relationship

2
5

Authors

Journals

citations
Cited by 9 publications
(3 citation statements)
references
References 26 publications
0
3
0
Order By: Relevance
“…is totally ramified over 2. By [12], A(k 2 k (1) ) ≃ [8] and A(k 2 k (2) ) ≃ [16] under GRH. Then A ∅ ∅,∞ (k ∞ k (∞) ) ≃ Z 2 by the same arguments under GRH.…”
Section: {2}mentioning
confidence: 99%
“…is totally ramified over 2. By [12], A(k 2 k (1) ) ≃ [8] and A(k 2 k (2) ) ≃ [16] under GRH. Then A ∅ ∅,∞ (k ∞ k (∞) ) ≃ Z 2 by the same arguments under GRH.…”
Section: {2}mentioning
confidence: 99%
“…Moreover, all imaginary quadratic fields k with prometacyclic (or abelian) G ∅ (k cyc ) have been characterized (cf. [29,32,39]). There also exists p such that G ∅ (Q(ζ p ) cyc ) is abelian and not procyclic (cf.…”
Section: 3mentioning
confidence: 99%
“…We denote by L(k ∞ )/k ∞ the maximal unramified pro-p extension, and put X (k ∞ ) = Gal(L(k ∞ )/k ∞ ). For the structure of X (k ∞ ), there are many studies ( [37], [39], [45], [32], [34], [7], etc.). Concerning this, the following conjecture is considered (see, e.g., [45, p.298], [7, p.101]).…”
mentioning
confidence: 99%