1989
DOI: 10.1007/bf00340011
|View full text |Cite
|
Sign up to set email alerts
|

On the mean width of random polytopes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
2

Year Published

1992
1992
2019
2019

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 10 publications
(7 citation statements)
references
References 9 publications
0
5
0
2
Order By: Relevance
“…For i = 1 and i = d asymptotic formulae for V i (K) − E n (V i ) as in Theorem 1 are already known: for K ∈ K 3 + Buchta, Müller and Tichy [6] (for points chosen uniformly from ∂K) and Müller [13] (for arbitrary densities d K (x)) determined the asymptotic behaviour of V 1 (K) − E n (V 1 ):…”
Section: Introduction and Statement Of Resultsmentioning
confidence: 98%
“…For i = 1 and i = d asymptotic formulae for V i (K) − E n (V i ) as in Theorem 1 are already known: for K ∈ K 3 + Buchta, Müller and Tichy [6] (for points chosen uniformly from ∂K) and Müller [13] (for arbitrary densities d K (x)) determined the asymptotic behaviour of V 1 (K) − E n (V 1 ):…”
Section: Introduction and Statement Of Resultsmentioning
confidence: 98%
“…A sequence satisfying (1.10) is easy to construct: consider finitely many squares (i.e. cubes of dimension d-~ 1) such that the interiors of their parallel projections on bd C cover bd C. In each square choose a well-dispersed sequence of points äs deseribed by Niederreiter [18]. Atttttge the images of the points of these sequences in bd C into a sequence in the followiög way: take first the images of the first points of these sequences in a defciite order» tfaen take the images of all second points in the same order, then take the images of aU third points, again in the same order, etc.…”
Section: Remarkmentioning
confidence: 99%
“…Por otro lado, si los n puntos están distribuidos de manera aleatoria sobre 8K ,y su densidad de distribución es g(s) = K(s) 2 ic(s) ds ax (es decir, la ley de distribución depende de la curvatura de OK) tenemos que (4) L(K) -E(L(H..))^' 4 ( f r, (S) ds)s n , n -> oo, ax siendo E(L(Hn )) el valor medio de L(H) (cf. [44] ).…”
Section: Iraunclassified
“…[20], [1] y [45]), -n puntos aleatorios sobre un cuerpo convexo suave que admiten una distribución absolutarnente continua respecto de la medida de superficie de &K y cuya densidad de distribución cumple ciertos requisitos de continuidad (cf. [44]), -n puntos aleatorios de los cuales n -i están distribuidos de manera uniforme; en la d-esfera Bd y los restantes i de manera uniforme; sobre el borde de Bd (cf. [43], [1]) .…”
Section: Observacionesunclassified