Abstract. When making measurements of air quality, having a reliable estimate of the measurement uncertainty is key to assessing the information content that an instrument is capable of providing, and thus its usefulness in a particular application. This is especially important given the widespread emergence of Low Cost Sensors (LCS) to measure air quality. To do this, end users need to clearly identify the data requirements a priori and design quantifiable success criteria by which to judge the data. All measurements suffer from errors, with the degree to which these impact the accuracy of the final data often determined by our ability to identify and correct for them. The advent of LCS has provided a challenge in that many error sources show high spatial and temporal variability, making laboratory derived corrections difficult. Characterizing LCS performance thus currently depends primarily on colocation studies with reference instruments, which are very expensive and do not offer a definitive solution but rather a glimpse of LCS performance in specific conditions over a limited period of time. Despite the limitations, colocation studies do provide useful information on measurement device error structure, but the results are non-trivial to interpret and often difficult to extrapolate to future device performance. A problem that obscures much of the information content of these colocation performance assessments is the exacerbated use of global performance metrics (R2, RMSE, MAE, etc.). Colocation studies are complex and time-consuming, and it is easy to fall into the temptation to only use these metrics when trying to define the most appropriate sensor technology to subsequently use. But the use of these metrics can be limited, and even misleading, restricting our understanding of the error structure and therefore the measurements’ information content. In this work, the nature of common air pollution measurement errors is investigated, and the implications these have on traditional metrics and other empirical, potentially more insightful, approaches to assess measurement performance. With this insight we demonstrate the impact these errors can have on measurements, using a selection of LCS deployed alongside reference measurements as part of the QUANT project, and discuss the implications this has on device end-use.