2000
DOI: 10.1046/j.1460-2695.2000.00343.x
|View full text |Cite
|
Sign up to set email alerts
|

On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part II: influence of hydrogen trapped by inclusions

Abstract: High cycle fatigue fracture surfaces of specimens in which failure was initiated at a subsurface inclusion were investigated by atomic force microscopy and by scanning electron microscopy. The surface roughness Ra increased with radial distance from the fracture origin (inclusion) under constant amplitude tension–compression fatigue, and the approximate relationship: Ra ≅ CΔK 2I holds. At the border of a fish‐eye there is a stretched zone. Dimple patterns and intergranular fracture morphologies are present out… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

5
128
0
1

Year Published

2008
2008
2022
2022

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 146 publications
(134 citation statements)
references
References 3 publications
5
128
0
1
Order By: Relevance
“…The transition from a short to ultralong life appears usually as a horizontal step in the S-N curve, and the horizontal step usually corresponds to the conventional fatigue limit. [6][7][8][9][10][11][12][13] In the vicinity of a nonmetallic inclusion at the fracture origin, a dark area was often observed by optical microscopy (OM) inside a fisheye mark for specimens with a long fatigue life. Murakami et al named this area the ''optically dark area'' (ODA).…”
mentioning
confidence: 99%
See 2 more Smart Citations
“…The transition from a short to ultralong life appears usually as a horizontal step in the S-N curve, and the horizontal step usually corresponds to the conventional fatigue limit. [6][7][8][9][10][11][12][13] In the vicinity of a nonmetallic inclusion at the fracture origin, a dark area was often observed by optical microscopy (OM) inside a fisheye mark for specimens with a long fatigue life. Murakami et al named this area the ''optically dark area'' (ODA).…”
mentioning
confidence: 99%
“…Murakami et al named this area the ''optically dark area'' (ODA). [10][11][12] This feature appeared as a very rough area when observed by scanning electron microscopy (SEM); Shiozawa et al named it the ''granular bright facet'' (GBF). [14,15] Many workers tried to explain the formation mechanism of ODA and obtained some interesting results.…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…(1)~ (17) .これは高応力振幅・短寿命域における表面破壊か ら,低応力振幅・長寿命域における内部介在物を起点とした内部破壊に破壊機構が変化することによって生じ, 通常 10 6 ~10 7 回程度で現れる疲労限度が消失する現象である.したがって,機械・構造物の安全性や信頼性を確 保した疲労設計と保守・管理技術の確立のためには,10 7 回を越える超高サイクル域で生じる内部破壊の機構を解 明することが重要な課題であり,これまでに多くの研究が行われてきた (18) .超高サイクル域で生じる内部破壊の 起点となった介在物周囲には凹凸の大きな粒状の領域,GBF(Granular Bright Facet)が観察され,塩澤らはこれ までに GBF 領域形成の機構として「微細炭化物の離散剥離説」を提案してきた (19), (20) .また,この領域の形成が 超高サイクル域の疲労破壊を支配することを指摘してきた.内部介在物周囲に形成される特異な領域およびその 形成機構は塩澤らによるものの他,村上ら (21), (22) は ODA と命名して介在物周囲にトラップされた水素の影響と繰 * 原稿受付 2010 年 12 月 2 日 *1 学生員,富山大学大学院理工学教育部(〒930-8555 3190) *3 正員,フェロー,富山大学大学院理工学研究部 *4 正員,金沢工業大学基礎教育部(〒921-8501 石川県石川郡野々市町扇が丘 7-1) *5 (株)不二越マテリアル事業部(〒931-8511 3-1-1) E-mail: shiozawa@eng.u-toyama.ac.jp …”
Section: 高強度・高硬度鋼や表面改質処理を施した高強度鋼などの超高サイクル疲労において,二段折れ曲がりあるい は二重 S-n 曲線unclassified
“…Consequently, crack formation was attributed to localized micro-plastic deformation. On the a Corresponding author: markus.fried@mtu.de other hand, Murakami et al [5] have described crack initiation starting from inclusions, growing to microcracks until critical stress concentrations induced crack propagation. A large portion of the total specimen life at low load levels is consumed by the crack initiation period.…”
Section: Introductionmentioning
confidence: 99%