Chemical modification
of biopolymers, before use in thermoplastic
applications, can reduce the susceptibility to open environment degradation.
We demonstrate carbon dots (CDs) as green photocatalytic triggers
that can render the common cellulose derivative, cellulose acetate
(CA), degradable under open environment relevant conditions. CD-modified
cellulose acetate (CA + CD) films were subjected to UV-A irradiation
in air and simulated sea water, and the degradation process was mapped
by multiple spectroscopic, chromatographic, and microscopy techniques.
The addition of CDs effectively catalyzed the deacetylation reaction,
the bottleneck preventing biodegradation of CA. The photocatalytically
activated degradation process led to significant weight loss, release
of small molecules, and regeneration of cellulose fibers. The weight
loss of CA + CD after 30 days of UV-A irradiation in air or simulated
sea water was 53 and 43%, respectively, while the corresponding values
for plain CA films were 12 and 4%. At the same time the weight average
molar mass of CA + CD decreased from 62,000 to 11,000 g/mol and 15,000
g/mol during UV-A irradiation in air and simulated sea water, respectively,
and the degree of substitution (DS) decreased from 2.2 to 1.6 both
in air and in water. The aging in water alone did not affect the weight
average molar mass, but the DS was decreased to 1.9. Control experiments
confirmed the generation of hydrogen peroxide when aqueous CD dispersion
was subjected to UV-A irradiation, indicating a free radical mechanism.
These results are promising for the development of products, such
as mulching films, with photocatalytically triggered environmental
degradation processes.