Abstract:In a graph G = (V, E), a vertex v ∈ V is said to distinguish two vertices x and y if v, y). A set S ⊆ V is said to be a local metric generator for G if any pair of adjacent vertices of G is distinguished by some element of S. A minimum local metric generator is called a local metric basis and its cardinality the local metric dimension of G. A set S ⊆ V is said to be a simultaneous local metric generator for a graph family G = {G 1 , G 2 , . . . , G k }, defined on a common vertex set, if it is a local metric generator for every graph of the family. A minimum simultaneous local metric generator is called a simultaneous local metric basis and its cardinality the simultaneous local metric dimension of G. We study the properties of simultaneous local metric generators and bases, obtain closed formulae or tight bounds for the simultaneous local metric dimension of several graph families and analyze the complexity of computing this parameter.