SUMMARYIn this paper an algorithm for large strain elasto-plasticity with isotropic hyperelasticity based on the multiplicative decomposition is formulated. The algorithm includes a (possible) constitutive equation for the plastic spin and mixed hardening in which the principal stress and principal backstress directions are not necessarily preserved. It is shown that if the principal trial stress directions are preserved during the plastic flow (as assumed in some algorithms) a plastic spin is inadvertently introduced for the kinematic/mixed hardening case. If the formulation is performed in the principal stress space, a rotation of the backstress is inadvertently introduced as well. The consistent linearization of the algorithm is also addressed in detail.