2020
DOI: 10.48550/arxiv.2009.09640
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

On the mod $p$ cohomology for $\mathrm{GL}_2$: the non-semisimple case

Abstract: Let F be a totally real field unramified at all places above p and D be a quaternion algebra which splits at either none, or exactly one, of the infinite places. Let r : Gal(F /F ) → GL 2 (Fp) be a continuous irreducible representation which, when restricted to a fixed place v|p, is non-semisimple and sufficiently generic. Under some mild assumptions, we prove that the admissible smooth representations of GL 2 (Fv) occurring in the corresponding Hecke eigenspaces of the mod p cohomology of Shimura varieties as… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2022
2022
2022
2022

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 37 publications
0
2
0
1
Order By: Relevance
“…son noyau et son conoyau sont de type fini sur O L . L'argument qui suit est inspiré des lemmes 5.4 et 5.11 de [39], et demande quelques préliminaires.…”
Section: Représentations Admissibles De Présentation Finie De Glunclassified
“…son noyau et son conoyau sont de type fini sur O L . L'argument qui suit est inspiré des lemmes 5.4 et 5.11 de [39], et demande quelques préliminaires.…”
Section: Représentations Admissibles De Présentation Finie De Glunclassified
“…Up to present, the (mod p) correspondence in the case of GL 2 (Q p ) has been well-understood in various aspects, by the work of [Bre03], [Col10], [Eme11], and [Paš13]. Recently, there have been significant progress towards a Langlands correspondence for GL 2 (L), when L is a finite unramified extension of Q p ([BHH + 20], [HW20], [BHH + 21]). However, a mod p Jacquet-Langlands correspondence is still largely unknown, even in the case of GL 2 (Q p ).…”
Section: Introductionmentioning
confidence: 99%
“…Remark 7.5. Under some (stronger) genericity condition on r| GF v , the assumption on dim K (π B ′ (r)) of Proposition 7.4 is verified in [BHH + 20], [HW20].…”
mentioning
confidence: 98%