Identification of the optimal operating conditions and evaluation of their robustness are critical issues for industrial processes. A standard procedure, for modelling a laboratory-scale wire-to-cylinder electrostatic precipitator and for guiding the research of the set point, is presented. The procedure consists of formulating a set of recommendations regarding the choice of parameter values for electrostatic precipitation. The experiments were carried out on a laboratory cylindrical precipitator, built by one of the authors, with samples of wood particles. The parameters considered are the applied high voltage U, the air flow F, and the quantity of dust in air m. Several ''one-factor-at-a-time'' followed by factorial composite design experiments were performed, based on the following three-step strategy: 1) Identify the domain of variation of the variables; 2) Determine the mathematical model of the process outcome; 3) Validation of the mathematical model and optimisation of the process.