Today, the world is increasingly concerned about energy and environmental challenges, and the search for renewable energy sources has become an unavoidable priority. In this context, Elaeis guineensis (better known as the African oil palm) has been placed in the spotlight due to its great potential and specific characteristics for the production of alternative fuels in the search for sustainable energy solutions. In the present study, bibliometric and co-occurrence analyses are proposed to identify trends, gaps, future directions, and challenges related to the production of bioethanol and hydrogen from oil palm rachis, using VOSviewer v.1.6.20 as a tool to analyze data obtained from SCOPUS. A mapping of several topics related to bioethanol and hydrogen production from oil palm bagasse or rachis is provided, resulting in contributions to the topic under review. It is shown that research is trending towards the use of oil palm rachis as a raw material for hydrogen production, consolidating its position as a promising renewable energy source. The field of hydrogen production from renewable sources has undergone constant evolution, and it is expected to continue growing and playing a significant role in the transition towards cleaner and more sustainable energy sources, potentially involving the adoption of innovative technologies such as solar-powered steam generation. From an economic point of view, developing a circular economy approach to bioethanol and hydrogen production from oil palm rachis and waste management will require innovations in material design, recycling technologies, and the development of effective life cycle strategies that can be evaluated through computer-assisted process simulation. Additionally, the extraction and purification of other gases during the dark fermentation method contribute to reducing greenhouse gas emissions and minimizing energy consumption. Ultimately, the sustainability assessment of bioethanol production processes is crucial, employing various methodologies such as life cycle assessment (LCA), techno-economic analysis, techno-economic resilience, and environmental risk assessment (ERA). This research is original in that it evaluates not only the behavior of the scientific community on these topics over the past 20 years but also examines a less-studied biofuel, namely bioethanol.