Abstract. We study the model of random permutations of n objects with polynomially growing cycle weights, which was recently considered by Ercolani and Ueltschi, among others. Using saddle-point analysis, we prove that the total variation distance between the process which counts the cycles of size 1, 2, ..., b and a process (Z1, Z2, ..., Z b ) of independent Poisson random variables converges to 0 if and only if b = o(ℓ) where ℓ denotes the length of a typical cycle in this model. By means of this result, we prove a central limit theorem for the order of a permutation and thus extend the Erdős-Turán Law to this measure. Furthermore, we prove a Brownian motion limit theorem for the small cycles.