2012
DOI: 10.37236/2574
|View full text |Cite
|
Sign up to set email alerts
|

On the Number of Partition Weights with Kostka Multiplicity One

Abstract: Given a positive integer $n$, and partitions $\lambda$ and $\mu$ of $n$, let $K_{\lambda \mu}$ denote the Kostka number, which is the number of semistandard Young tableaux of shape $\lambda$ and weight $\mu$.  Let $J(\lambda)$ denote the number of $\mu$ such that $K_{\lambda \mu} = 1$.  By applying a result of Berenshtein and Zelevinskii, we obtain a formula for $J(\lambda)$ in terms of restricted partition functions, which is recursive in the number of distinct part sizes of $\lambda$.  We use this to classif… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 3 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?