“…Let us write down those formulas for completeness (cf. [25,5]). Define r(w, q −1 , z) = τ q −w•τ 1 k≥1 q χ(τ k ,τ k ) z τ k (q) τ k −τ k+1 where (1) τ = (τ i ) i∈Q 0 is a collection of partitions, (2) τ k = (τ i k ) i∈Q 0 ∈ N Q 0 for k ≥ 1, (3) z v = i∈Q 0 z v i i for v ∈ N Q 0 , (4) (q) v = i∈Q 0 (q) v i , (q) n = (q; q) n = n k=1 (1 − q k ) for v ∈ N Q 0 and n ∈ N, (5) χ is the Euler-Ringel form of the quiver Q. Theorem 6.11.…”