Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this paper, we use the elementary and analytic methods to study the fourth hybrid power mean involving the generalized Gauss sums and prove several interesting identities for them.
In this paper, we use the elementary and analytic methods to study the fourth hybrid power mean involving the generalized Gauss sums and prove several interesting identities for them.
Let
π½
q
{\mathbb{F}_{q}}
be the finite field of
odd characteristic p with q elements (
q
=
p
n
{q=p^{n}}
,
n
β
β
{n\in\mathbb{N}}
)
and let
π½
q
*
{\mathbb{F}_{q}^{*}}
represent the set of nonzero elements
of
π½
q
{\mathbb{F}_{q}}
. By making use of the Smith normal form of
exponent matrices, we obtain an explicit formula for the
number of rational points on the variety defined by the
following system of equations over
π½
q
{\mathbb{F}_{q}}
:
{
β
i
=
1
r
a
i
(
1
)
β’
x
1
e
i
β’
1
(
1
)
β’
β―
β’
x
n
e
i
β’
n
(
1
)
=
b
1
,
β
j
β²
=
0
t
-
1
β
i
β²
=
1
r
j
β²
+
1
-
r
j
β²
a
r
j
β²
+
i
β²
(
2
)
β’
x
1
e
r
j
β²
+
i
β²
,
1
(
2
)
β’
β―
β’
x
n
j
β²
+
1
e
r
j
β²
+
i
β²
,
n
j
β²
+
1
(
2
)
=
b
2
,
\left\{\begin{aligned} &\displaystyle\sum_{i=1}^{r}a^{(1)}_{i}x_{1}^{e_{i1}^{(%
1)}}\cdots x_{n}^{e_{in}^{(1)}}=b_{1},\\
&\displaystyle\sum^{t-1}_{j^{\prime}=0}\sum^{r_{j^{\prime}+1}-r_{j^{\prime}}}_%
{i^{\prime}=1}a^{(2)}_{r_{j^{\prime}}+i^{\prime}}x_{1}^{e_{r_{j^{\prime}}+i^{%
\prime},1}^{(2)}}\cdots x_{n_{{j^{\prime}}+1}}^{e_{r_{j^{\prime}}+i^{\prime},n%
_{{j^{\prime}}+1}}^{(2)}}=b_{2},\end{aligned}\right.\vspace*{1mm}
where
b
i
β
π½
q
{b_{i}\in\mathbb{F}_{q}}
(
i
=
1
,
2
{i=1,2}
),
t
β
β
{t\in\mathbb{N}}
,
0
=
n
0
<
n
1
<
n
2
<
β―
<
n
t
,
0=n_{0}<n_{1}<n_{2}<\cdots<n_{t},\vspace*{1mm}
n
k
-
1
<
n
β€
n
k
{n_{k-1}<n\leq n_{k}}
for some
1
β€
k
β€
t
{1\leq k\leq t}
,
0
=
r
0
<
r
1
<
r
2
<
β―
<
r
t
,
0=r_{0}<r_{1}<r_{2}<\cdots<r_{t},\vspace*{1mm}
a
i
(
1
<abstract><p>Let $ p $ stand for an odd prime and let $ \eta\in \mathbb Z^+ $ (the set of positive integers). Let $ \mathbb F_q $ denote the finite field having $ q = p^\eta $ elements and $ \mathbb F_q^* = \mathbb F_q\setminus \{0\} $. In this paper, when the determinants of exponent matrices are coprime to $ q-1 $, we use the Smith normal form of exponent matrices to derive exact formulas for the numbers of rational points on the affine varieties over $ \mathbb F_q $ defined by</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{ \begin{aligned} &a_1x_1^{d_{11}}...x_n^{d_{1n}}+... +a_sx_1^{d_{s1}}...x_n^{d_{sn}} = b_1,\\ &a_{s+1}x_1^{d_{s+1,1}}...x_n^{d_{s+1,n}}+... +a_{s+t}x_1^{d_{s+t,1}}...x_n^{d_{s+t,n}} = b_2 \end{aligned} \right. $\end{document} </tex-math></disp-formula></p> <p>and</p> <p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \left\{ \begin{aligned} &c_1x_1^{e_{11}}...x_m^{e_{1m}}+... +c_rx_1^{e_{r1}}...x_m^{e_{rm}} = l_1,\\ &c_{r+1}x_1^{e_{r+1,1}}...x_m^{e_{r+1,m}}+... +c_{r+k}x_1^{e_{r+k,1}}...x_m^{e_{r+k,m}} = l_2,\\ &c_{r+k+1}x_1^{e_{r+k+1,1}}...x_m^{e_{r+k+1,m}}+... +c_{r+k+w}x_1^{e_{r+k+w,1}}...x_m^{e_{r+k+w,m}} = l_3, \end{aligned} \right. $\end{document} </tex-math></disp-formula></p> <p>respectively, where $ d_{ij}, e_{i'j'}\in \mathbb Z^+, a_i, c_{i'}\in \mathbb F_q^*, i = 1, ..., s+t,$ $j = 1, ..., n, i' = 1, ..., r+k+w, j' = 1, ..., m, $ and $ b_1, b_2, l_1, l_2, l_3\in \mathbb F_q $. These formulas extend the theorems obtained by Q. Sun in 1997. Our results also give a partial answer to an open question posed by S.N. Hu, S.F. Hong and W. Zhao [The number of rational points of a family of hypersurfaces over finite fields, <italic>J. Number Theory</italic> <bold>156</bold> (2015), 135β153].</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsβcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright Β© 2025 scite LLC. All rights reserved.
Made with π for researchers
Part of the Research Solutions Family.