“…The special cases of the SKw-G family of distributions, SKwC, SKwW, SKwBXII, and SKwF distributions, are compared with Weibull Nadarajah-Haghighi (WNH) [28], generalized power Weibull (GPW) [29], exponentiated generalized Poisson inverse exponential (EGPIE) [30], Weibull inverted exponential (WIE) [31], modified Weibull (MW) [32], Kumaraswamy-Burr III (KB III) [33], complementary 12 Computational and Mathematical Methods exponential power (CEP) [34], and odd generalized exponential Weibull (OGEW) [34] distributions. Others include generalized odd inverse exponential Lomax (GOIEL) [24], Kumaraswamy inverse exponential (KIE) [35], Weibull (W) [16], odd inverse exponential Weibull (OIEW) [24], exponentiated odd inverse exponential Weibull (EOIEW) [24], new sine inverse Weibull (NSIW) [36], sine inverse Weibull (SIW) [36], inverse Weibull (IW) [37], inverted Nadarajah-Haghighi (INH) [38], the exponentiated generalized inverse Weibull (EGIW) [39], Kumaraswamy Burr III [40], and new Weibull Pareto [41] distributions. The performance of the fitted distributions is compared using log-likelihood (ℓ), Akaike information criteria (AIC), corrected Akaike information criteria (AICc), Bayesian information criteria (BIC), and the Kolmogorov-Smirnov (K-S) goodness-of-fit measure.…”