2022
DOI: 10.7151/dmgt.2259
|View full text |Cite
|
Sign up to set email alerts
|

On the optimality of 3-restricted arc connectivity for digraphs and bipartite digraphs

Abstract: Let D be a strong digraph. An arc subset S is a k-restricted arc cut of D if D − S has a strong component D ′ with order at least k such that D\V (D ′) contains a connected subdigraph with order at least k. If such a k-restricted arc cut exists in D, then D is called λ k-connected. For a λ kconnected digraph D, the k-restricted arc connectivity, denoted by λ k (D), is the minimum cardinality over all k-restricted arc cuts of D. It is known that for many digraphs λ k (D) ≤ ξ k (D), where ξ k (D) denotes the min… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
(18 reference statements)
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?