SUMMARYThe work reported in this article presents a high-order, stable, and efficient Gegenbauer pseudospectral method to solve numerically a wide variety of mathematical models. The proposed numerical scheme exploits the stability and the wellconditioning of the numerical integration operators to produce well-conditioned systems of algebraic equations, which can be solved easily using standard algebraic system solvers. The core of the work lies in the derivation of novel and stable Gegenbauer quadratures based on the stable barycentric representation of Lagrange interpolating polynomials and the explicit barycentric weights for the Gegenbauer-Gauss (GG) points. A rigorous error and convergence analysis of the proposed quadratures is presented along with a detailed set of pseudocodes for the established computational algorithms. The proposed numerical scheme leads to a reduction in the computational cost and time complexity required for computing the numerical quadrature while sharing the same exponential order of accuracy achieved by [Elgindy and Smith-Miles (2013a)]. The bulk of the work includes three numerical test examples to assess the efficiency and accuracy of the numerical scheme. The present method provides a strong addition to the arsenal of numerical pseudospectral methods, and can be extended to solve a wide range of problems arising in numerous applications.