In the last twenty years, N-heterocyclic carbenes (NHCs) have acquired considerable popularity as ligands for transition metals, organocatalysts and in metal-free polymer synthesis. NHCs are generally derived from azolium based salts NHCH+X− by deprotonation or reduction (chemical or electrochemical) of NHCH+. The extensive knowledge of the physicochemical properties of NHCH+/NHC system could help to select the conditions (scaffold of NHC, nature of the counter-ion X−, solvent, etc.) to enhance the catalytic power of NHC in a synthesis. The electrochemical behavior of NHCH+/NHC system, in the absence and in the presence of solvent, was extensively discussed. The cathodic reduction of NHCH+ to NHC and the anodic oxidation of NHC, and the related effect of the scaffold, solvent, and electrodic material were emphasized. The electrochemical investigations allow acquiring further knowledge as regards the stability of NHC, the acidic and nucleophilic properties of NHCH+/NHC system, the reactivity of NHC versus carbon dioxide and the effect of the hydrogen bond on the catalytic efficiency of NHC. The question of the spontaneous or induced formation of NHC from particular ionic liquids was reconsidered via voltammetric analysis. The results suggested by the classical and the electrochemical methodologies were compared and discussed.