The aim of the present work was to perform a preliminary study of the physicochemical properties of hybrid organic-inorganic gel electrolytes for Li-ion batteries based on the PAN/TMS -poly(acrylonitrile)/sulfolane -polymeric matrix and surface-modified precipitated silicas. Modifications were done by means of the so-called dry method using silane U-511 3-methacryloxypropyltrimetoxysilane. Scanning electron microscopy (SEM), noninvasive back scattering method (NIBS), specific surface area (BET), the degree of modification of the silica fillers-Fourier-transform infrared spectroscopy (FT-IR), impedance analysis, and charging/ discharging were carried out. It is found that the silica fillers were homogeneously dispersed in the polymeric matrix, which enhanced conductivity and electrochemical stability of porous polymer electrolytes. Applicability of the prepared gel electrolytes for the Li-ion technology was estimated on the basis of specific conductivity measurements. It was shown that modification of the silica surface by the silane causes an increase in the gel-specific conductivity by about 2 orders of magnitude as compared to gel with unmodified silica.