2024
DOI: 10.3934/math.2024571
|View full text |Cite
|
Sign up to set email alerts
|

On the packing number of $ 3 $-token graph of the path graph $ P_n $

Christophe Ndjatchi,
Joel Alejandro Escareño Fernández,
L. M. Ríos-Castro
et al.

Abstract: <abstract><p>In 2018, J. M. Gómez et al. showed that the problem of finding the packing number $ \rho(F_2(P_n)) $ of the 2-token graph $ F_2(P_n) $ of the path $ P_n $ of length $ n\ge 2 $ is equivalent to determining the maximum size of a binary code $ S' $ of constant weight $ w = 2 $ that can correct a single adjacent transposition. By determining the exact value of $ \rho(F_2(P_n)) $, they proved a conjecture of Rob Pratt. In this paper, we study a related problem, which consists of determining… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?