2020
DOI: 10.48550/arxiv.2002.09010
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

On the permutative equivalence of squares of unconditional bases

Abstract: We prove that if the squares of two unconditional bases are equivalent up to a permutation, then the bases themselves are permutatively equivalent. This settles a twenty year-old question raised by Casazza and Kalton in [13]. Solving this problem provides a new paradigm to study the uniqueness of unconditional basis in the general framework of quasi-Banach spaces. Multiple examples are given to illustrate how to put in practice this theoretical scheme. Among the main applications of this principle we obtain th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?