Corrosion behavior of copper in 1 M nitric acid containing either 2-mercaptobenzimidazole (MBI) or 2-thiomethylbenzimidazole (TMBI) was investigated experimentally and theoretically via weight loss method and quantum chemical approaches. It was found that the two compounds exhibit a very good performance as inhibitors for copper corrosion in the studied medium. Results show that the inhibition efficiencies increase with increasing temperature and increasing concentration of the inhibitors. It has been found that the studied compounds adsorb onto copper according to the modified Langmuir adsorption isotherm and the kinetic/thermodynamic isotherm of El-Awady. The thermodynamic adsorption parameters and kinetic corrosion parameters were determined and analyzed; on the bases of these parameters both physisorption and chemisorption were suggested for the studied compounds. Furthermore, the quantum chemical properties/descriptors most relevant to their potential action as corrosion inhibitors have been calculated. They include E HOMO , E LUMO , energy gap (ΔE), dipole moment (μ), hardness (η), softness (σ), the fractions of electrons transferred (ΔN), electrophilicity index (ω), and the total energy change (ΔE T ). The theoretical results were found to be consistent with the experimental data reported.