In passive radar, two main challenges are: mitigating the direct blast, since the illuminators broadcast continuously, and achieving a large enough integration gain to detect targets. While the first has to be solved in part in the analog part of the processing chain, due to the huge difference of signal strength between the direct blast and weak target reflections, the second is about combining enough signal efficiently, while not sacrificing too much performance. When combining this setup with digital multicarrier waveforms like orthogonal frequency division multiplex (OFDM) in digital audio/video broadcast (DAB/DVB), this problem can be seen to be a version of multiple-input multipleoutput (MIMO) radar. We start with an existing approach, based on efficient fast Fourier transform (FFT) operation to detect target signatures, and show how this approach is related to a standard matched filter approach based on a piece-wise constant approximation of the phase rotation caused by Doppler shift. We then suggest two more applicable algorithms, one based on subspace processing and one based on sparse estimation. We compare these various approaches based on a detailed simulation scenario with two closing targets and experimental data recorded from a DAB network in Germany.