Misalkan G adalah graf terhubung dan S_2 merupakan himpunan dominasi jarak dua dari graf G. S_2 didefinisikan sebagai subset dari V(G) yang sedemikian hingga titik-titik pada G yang tidak terhubung dengan S_2 memiliki jarak maksimal 2 terhadap S_2. Kardinalitas minimum dari S_2 dinotasikan dengan Gamma_2(G) dan disebut bilangan dominasi. Pada artikel ini, ditentukan bilangan dominasi jarak dua dari hasil operasi shackle titik dan sisi pada graf Bipartit lengkap dan graf Tripartit lengkap, yaitu Shack (K_(m,n),v,k) m>=2, n>=3, Shack(K_(m,n),e,k) m>=2, n>=3, Shack(K_(m,n,r),v,k) m,n,r>=2, dan Shack(K_(m,n,r),e,k) m,n,r>=2. Implementasi konsep ini digunakan untuk menentukan jumlah minimum pos pangkalan ojek di Kabupaten Jember. Sumbersari, Patrang dan Kaliwates masing-masing direpresentasikan ke dalam graf yaitu (Sb-Graf), (Pt-Graf), dan (Kl-Graf) dengan ketentuan warung atau kedai, persimpangan jalan, dan masjid direpresentasikan sebagai titik dan jarak antar lokasi tersebut digambarkan sebagai sisi. Hasil akhir dari penelitian ini diperoleh jumlah minimum pos pangkalan ojek, yaitu 8 pos (Sumbersari), 7 (Patrang), dan 5 (Kaliwates) dari 169 titik yang tersebar di ketiga Kecamatan tersebut. Dari jumlah tersebut diimplementasikan menggunakan aplikasi ARCGIS yang berbasis SIG (Sistem Informasi Geografis) pada ketiga kecamatan tersebut.