У цій статті ми розглядаємо стійкість граничних режимів для загального класу нелінійних розподілених математичних моделей, які називаються моделями реакції-дифузії. Системи реакції-дифузії природно виникають у багатьох застосуваннях. Наприклад, при математичному моделюванні в біології та у теорії передачі сигналів широко використовується модель ФітцХью–Нагумо (FitzHugh–Nagumo model), розподілений варіант якої є окремим випадком загальної системи реакції-дифузії. Досліджено проблему стійкості притягуючих множин для нескінченновимірної системи реакції-дифузії відносно обмежених зовнішніх сигналів (збурень). Функції взаємодії, а також нелінійні збурення не вважаються неперервними за Ліпшицем. Отже, ми не можемо очікувати єдиності розв’язку для відповідної початкової задачі, і ми повинні використовувати багатозначний напівгруповий підхід. Вважається, що незбурена система має глобальний атрактор, тобто мінімальну компактну рівномірно притягаючу множину. Основною метою дослідження є оцінка відхилення траєкторії збуреної системи від глобального атрактора незбуреної як функції величини зовнішніх сигналів. Таку оцінку можна отримати в рамках теорії стійкості входу до стану (ISS). У статті запропоновано новий підхід до отримання оцінок робастної стійкості атрактора у випадку багатозначного еволюційного оператора. Зокрема, доведено, що багатозначна напівгрупа, породжена слабкими розв’язками нелінійної системи типу реакції-дифузії, має властивість локальної ISS відносно атрактора незбуреної системи.