JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. American Statistical Association is collaborating with JSTOR to digitize, preserve and extend access to Journal of Business &Economic Statistics.In this article, we examine the aggregation properties of (nested) logit models to understand their exceptional macro-level performance. The problem of aggregating micro logit models involves integrating nonlinear functions of model parameters over a distribution of consumer heterogeneity. The aggregation problem is analyzed using a mixture of analytic and simulation techniques, with the simulation experiments using actual panel data to calibrate the distribution of heterogeneity. We conclude that the practice of fitting aggregate logit models is theoretically justified under the following three conditions: (1) All consumers are exposed to the same marketing-mix variables, (2) the brands are close substitutes, and (3) the distribution of prices is not concentrated at an extreme value. These conditions are frequently met in store-level scanner data.